化苑讲坛
首页 >> 化苑讲坛 >> 正文

171期

Jingxian Yu,John Horsley

作者:  发布:2015-10-13 00:00:00  点击量:

报告题目:Electron Transfer in Peptides: Experimental Evidence and Theoretical Insights

人:Jingxian Yu, John Horsley (The University of Adelaide)

报告时间:20151013日上午930

报告地点:化学楼二楼一号会议室

报告人简介:

     Dr Jingxian Yu completed his BEng, MSc and DSc (electrochemistry) degrees in China and his PhD (nanotechnology) in Australia. Upon the completion of his PhD program he moved to the University of Cambridge, UK as a Roger Pysden Research Fellow and later the University of Nottingham, UK as a postdoctoral research fellow. He returned to Australia in 2009 to take up an ARC Australian Postdoctoral Fellowship (APD) at the University of Adelaide. Presently he is an ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) senior researcher at the same university. He has a specific interest in electron transfer in peptides using combined electrochemical and computational techniques, and a growing interest in the biological applications of nanomaterials. He is a recipient of a number of awards, including the CASS Foundation Award,Roger Pysden Memorial Fellowship, Ian Potter Foundation Award, Flinders UniversityOverseas Travelling Fellowship and AMY Forwood Travelling Award.

Dr John Horsley completed his BSc (Hons) at Flinders University, before undertaking a PhD at the University of Adelaide in 2011, working exclusively on electron transfer in peptides. He is currently employed by the Centre of Excellence for Nanoscale BioPhotonics (CNBP) at the University of Adelaide, researching means todetect protein/protein interaction to further our understanding of fundamental biological processes at the molecular level.

报告简介:

    Natural proteins have evolved to promote electron transfer in many biological processes. However, their complex conformational nature inhibits a thorough investigation, so in order to study electron transfer in proteins, simple peptide models containing redox active moieties present as ideal candidates. Here, a series of peptides constrained into either helical or β-strand onformations have been synthesized for electrochemical analysis. The effect of backbone igidity imparted by a side-bridge constraint was revealed, which was shown to restrict the necessary torsional motion that leads to facile intramolecular electron transfer along the peptide backbone. High level calculations were used to support the electrochemical observations on all significant findings. This provides a new approach for fine tuning the electronic properties of peptides through manipulation of their structural and chemical characteristics in order to progress the field of molecular electronics.

上一篇:172期
下一篇:170期

版权所有 云顶7610官网登录 - 云顶国际集团游戏app COPYRIGHT 2014-2021
通讯地址:湖北省武汉市洪山区珞喻路1037号华中科技大学西一楼208室
邮编:430074
联系电话:027-58868736
学院邮箱:hustchem@hust.edu.cn

  • 微信公众号